Part Number Hot Search : 
HC257 74HC4017 ALVT1628 BSX51 600ETTT CFU1001V 74F82300 381019
Product Description
Full Text Search
 

To Download IRF1010EZLPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 hexfet ? is a registered trademark of international rectifier. irf1010ezpbf irf1010ezspbf IRF1010EZLPBF hexfet ? power mosfet s d g v dss = 60v r ds(on) = 8.5m ? i d = 75a features advanced process technology ultra low on-resistance dynamic dv/dt rating 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free description this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating.these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. d 2 pak irf1010ezspbf to-220ab irf1010ezpbf to-262 IRF1010EZLPBF absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) single pulse avalanche energy tested value  i ar avalanche current a e ar repetitive avalanche energy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.11 c/w r cs case-to-sink, flat, greased surface 0.50 ??? r ja junction-to-ambient ??? 62 r ja junction-to-ambient (pcb mount, steady state)  ??? 40 max. 84 60 340 75 10 lbf?in (1.1n?m) 140 0.90 20 99 180 see fig.12a,12b,15,16 300 (1.6mm from case ) -55 to + 175 pd - 95483c
 
 2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.077mh, r g = 25 ? , i as = 51a, v gs =10v. part not recommended for use above this value.  i sd 51a, di/dt 260a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. s d g s d g static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e60?????? v ? v dss / ? t j breakdown volta g e temp. coefficien t ??? 0.058 ??? v/c r ds(on) static drain-to-source on-resistanc e ??? 6.8 8.5 m ? v gs(th) gate threshold volta g e 2.0 ??? 4.0 v g fs forward transconductance 200 ??? ??? s i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 200 na gate-to-source reverse leaka g e ??? ??? -200 q g total gate char g e ??? 58 86 nc q gs gate-to-source char g e ??? 19 28 q gd gate-to-drain ("miller") char g e ??? 21 32 t d(on) turn-on dela y time ??? 19 ??? ns t r rise time ??? 90 ??? t d(off) turn-off dela y time ??? 38 ??? t f fall time ??? 54 ??? l d internal drain inductance ??? 4.5 ??? nh between lead, 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from packa g e and center of die contact c iss input capacitance ??? 2810 ??? pf c oss output capacitance ??? 420 ??? c rss reverse transfer capacitance ??? 200 ??? c oss output capacitance ??? 1440 ??? c oss output capacitance ??? 320 ??? c oss eff. effective output capacitance ??? 510 ??? diode characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 84 (body diode) a i sm pulsed source current ??? ??? 340 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 41 62 ns q rr reverse recover y char g e ??? 54 81 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 51a  v ds = v gs , i d = 100a v ds = 60v, v gs = 0v v ds = 60v, v gs = 0v, t j = 125c r g = 7.95 ? i d = 51a v ds = 25v, i d = 51a v dd = 30v i d = 51a v gs = 20v v gs = -20v t j = 25c, i f = 51a, v dd = 30v di/dt = 100a/ s  t j = 25c, i s = 51a, v gs = 0v  showing the integral reverse p-n junction diode. mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 48v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 48v v ds = 48v v gs = 10v  ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 10v 
 
 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 20s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4 5 6 7 8 9 10 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 20s pulse width tj = 25c 4.5v 0 20 40 60 80 100 120 140 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 70 80 90 100 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 25v 60s pulse width
 
 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 102030405060 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v v ds = 30v v ds = 12v i d = 51a 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse
 
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 84a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.415 0.000246 0.410 0.000898 0.285 0.009546 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 90 100 i d , d r a i n c u r r e n t ( a ) limited by package
 
 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 5.7a 9.1a bottom 51a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a
 
 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 25 50 75 100 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 51a
 
 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms
 
 www.irf.com 9 

 
 

  
   
  international part number rect ifier lot code assembly logo year 0 = 2000 dat e code week 19 line c lot code 1789 example: this is an irf1010 note: "p" in assembly line position i ndicates "l ead - f ree" in t he as s embly line "c" as s e mb le d on ww 19, 2000 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/
 
 10 www.irf.com  
 

 
 dat e code year 0 = 2000 we e k 0 2 a = as s e mb l y s i t e cod e rect ifier int ernat ional part number p = de s i gnat e s l e ad - f r e e product (optional) f530s in the assembly line "l" assembled on ww 02, 2000 this is an irf530s with lot code 8024 internat ional logo rect ifier lot code assembly year 0 = 2000 part number dat e code line l we e k 02 or f530s logo assembly lot code  


  
   
  notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/
 
 www.irf.com 11 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches) logo rectifier international lot code assembly logo rectifier international dat e code we e k 19 year 7 = 1997 part number a = assembly site code or product (optional) p = des ignates lead-free example: this is an irl3103l lot code 1789 as s e mb l y part number dat e code we e k 19 line c lot code year 7 = 1997 as s emb le d on ww 19, 1997 in the assembly line "c" notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010ez.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/
 
 12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/2010    

 ! 
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.


▲Up To Search▲   

 
Price & Availability of IRF1010EZLPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X